UJI KRUSKAL WALLIS DAN FRIEDMAN
UJI KRUSKAL WALIS
Uji Kruskal-Wallis atau Kruskal-Wallis H test adalah alternatif dari ANOVA satu arah. Uji ini sering disebut dengan uji H, berkaitan dengan tiga atau lebih sampel acak yang independen. Tujuan pengujian ini adalah untuk mengetahui apakah sampel-sampel tersebut berasal dari populasi yang memiliki mean sama.
Secara umum menurut Harinaldi (2005:239) dalam pengujiannya Kruskal Wallis terdiri dari langkah langkah berikut :
a. Pernyataan hipotesis nol dan alternatif
H0 = seluruh mean populasi sama atau tidak ada perbedaan yangsignifikan antara kelompok sampel
H1 = tidak seluruh mean populasi sama atau ada perbedaan yangsignifikan antara kelompok sampel
b. Pemilihan tingkat kepentingan (α)
c. Pembuatan peringkat data tanpa membedakan kategori
d. Penentuan distribusi pengujiany ang digunkan Untuk uji ini digunakan distribusi chi kuadrat (χ2)
e. Pernyataan aturan keputusanH0 ditolah jika Hhitung > χ2
f. Perhitungan data keputusan atau nilai H
g. Pengambilan keputusan statistik
UJI FRIEDMAN
Uji Friedman atau Friedman test adalah alternatif dari ANOVA dua arah. Tujuan dari uji ini adalah untuk melihat ada tidaknya perbedaan pengaruh antar perlakuan atau untuk menguji signifikansi pengaruh berbagai perlakuan terhadap kelompok subjek atau sampel penelitian yang saling berhubungan. Secara umum prosedur uji Friedman hampir sama dengan uji H yakni terdiri dari langkah langkah berikut :
a. Pernyataan hipotesis nol dan alternatif
H0 = tidak ada perbedaan yang signifikan antara variabel dengan kondisi atau perlakuan
H1 = ada perbedaan yang signifikan antara variabel dengan kondisi atau perlakuan
b. Pemilihan tingkat kepentingan (α)
c. Pembuatan peringkat pada setiap kelompok
d. Penentuan distribusi pengujian yang digunkan Untuk uji ini digunakan distribusi chi kuadrat (χ2)
e. Pernyataan aturan keputusan H0 ditolah jika Hhitung > χ2
f. Perhitungan data keputusan atau nilai Fr
g. Pengambilan keputusan statistik
Komentar
Posting Komentar